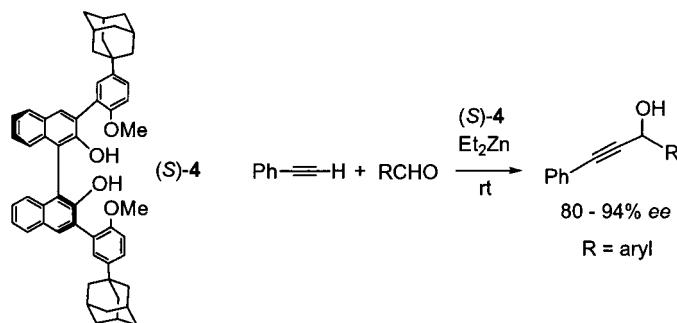


A New 1,1'-Binaphthyl-Based Catalyst for the Enantioselective Phenylacetylene Addition to Aromatic Aldehydes without Using a Titanium Complex


Ming-Hua Xu and Lin Pu*

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319

lp6n@virginia.edu

Received October 15, 2002

ABSTRACT

A novel 1,1'-binaphthyl compound containing bulky 3,3'-aryl substituents is found to catalyze the reaction of a terminal alkyne with various aromatic aldehydes under mild conditions to generate chiral propargyl alcohols with 80–94% ee. Unlike the previously reported 1,1'-binaphthyl catalysts, this new compound does not require the use of a titanium complex and the pre-preparation of an alkynylzinc. This has greatly simplified the experimental procedure for this reaction.

The asymmetric alkynylzinc addition to aldehydes^{1–5} is very useful for the synthesis of chiral propargyl alcohols that are

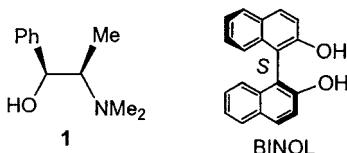
important precursors to many chiral organic compounds.^{6–8} Among the catalysts developed for this reaction,^{1–5} two types of chiral ligands have shown high enantioselectivity for various substrates. One is the amino alcohol ligand **1** reported by Carreira,² and the other is BINOL reported by us³ and Chan.⁴ Carreira's catalyst shows excellent enantioselectivity for the alkynylzinc addition to *aliphatic* aldehydes, and the BINOL catalyst shows excellent enantioselectivity for the

(1) (a) Pu, L.; Yu, H. B. *Chem. Rev.* **2001**, *101*, 757–824. (b) Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M. *Acc. Chem. Res.* **2000**, *33*, 373–381.

(2) Anand, N. K.; Carreira, E. M. *J. Am. Chem. Soc.* **2001**, *123*, 9687–9688.

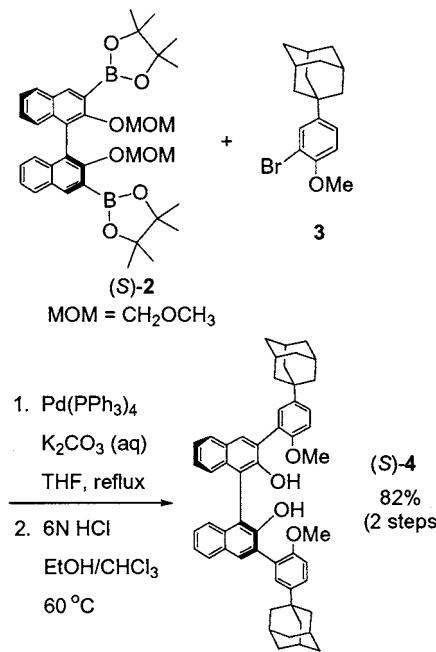
(3) (a) Moore, D.; Pu, L. *Org. Lett.* **2002**, *4*, 1855–1857. (b) We further found that the BINOL-Ti(O*i*Pr)₄ catalyst can also catalyze the highly enantioselective phenylacetylene addition to aliphatic and α,β -unsaturated aldehydes: Gao, G.; Moore, D.; Xie, R.-G.; Pu, L. *Org. Lett.* **2002**, ASAP.

(4) (a) Lu, G.; Li, X.; Chan, W. L.; Chan, A. S. C. *J. Chem. Soc., Chem. Commun.* **2002**, 172–173. (b) Li, X.; Lu, G.; Kwok, W. H.; Chan, A. S. C. *J. Am. Chem. Soc.* **2002**, *124*, 12636–12637.


(5) (a) Ishizaki, M.; Hoshino, O. *Tetrahedron: Asymmetry* **1994**, *5*, 1901–1904. (b) Niwa, S.; Soai, K. *J. Chem. Soc., Perkin Trans. 1* **1990**, 937–943. (c) Tombo, G. M. R.; Didier, E.; Loubinoux, B. *Synlett* **1990**, 547–548. (d) Li, Z.; Upadhyay, V.; DeCamp, A. E.; DiMichele, L.; Reider, P. *Synthesis* **1999**, 1453–1458. (e) Lu, G.; Li, X.; Zhou, Z.; Chan, W. L.; Chan, A. S. C. *Tetrahedron: Asymmetry* **2001**, *12*, 2147–2152. (f) Jiang, B.; Chen, Z.; Xiong, W. *J. Chem. Soc., Chem. Commun.* **2002**, 1524–1525.

(6) *Modern Acetylene Chemistry*; Stang, P. J., Diederich, F., Eds.; VCH: Weinheim, Germany, 1995.

(7) (a) Marshall, J. A.; Wang, X. J. *J. Org. Chem.* **1992**, *57*, 1242–1252. (b) Fox, M. E.; Li, C.; Marino, J. P., Jr.; Overman, L. E. *J. Am. Chem. Soc.* **1999**, *121*, 5467–5480. (c) Myers, A. G.; Zheng, B. *J. Am. Chem. Soc.* **1996**, *118*, 4492–4493. (d) Thompson, A.; Corley, E. G.; Huntington, M. F.; Grabowski, E. J. J.; Remenar, J. F.; Collum, D. B. *J. Am. Chem. Soc.* **1998**, *120*, 2028–2038.


(8) (a) Trost, B. M.; Krische, M. J. *J. Am. Chem. Soc.* **1999**, *121*, 6131–6141. (b) Roush, W. R.; Scioti, R. J. *J. Am. Chem. Soc.* **1994**, *116*, 6457–6458. (c) Corey, E. J.; Cimprich, K. A. *J. Am. Chem. Soc.* **1994**, *116*, 3151–3152.

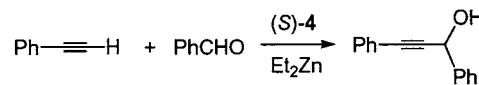
alkynylzinc addition to aromatic aldehydes.^{3,4} We found that the BINOL-catalyzed reaction required the use of 0.5–1 equiv of $Ti(O^{\prime}Pr)_4$ and a separated step for the preparation of an alkynylzinc reagent from a terminal alkyne and diethylzinc.³ Herein, we report the discovery of a new 1,1'-binaphthyl-based catalyst for the enantioselective reaction of phenylacetylene with aromatic aldehydes *without using the titanium complex and pre-preparing the alkynylzinc*.

The optically active 1,1'-binaphthyl compound containing bulky 3,3'-aryl substituents, (*S*)-4, was synthesized according to Scheme 1.⁹ The Suzuki coupling¹⁰ of (*S*)-2 with an aryl

Scheme 1. Synthesis of the Novel 1,1'-Binaphthyl Compound (*S*)-4

bromide containing an adamantanyl substituent (**3**) followed by hydrolysis gave (*S*)-4 in 82% yield.¹¹ The ¹H NMR spectrum of this compound shows its *C*₂ symmetry with a singlet observed at δ 3.81 for the two methyl groups. This

(9) (a) Huang, W.-S.; Hu, Q.-S.; Pu, L. *J. Org. Chem.* **1999**, *64*, 7940–7956. (b) Huang, W.-S.; Pu, L. *Tetrahedron Lett.* **2000**, *41*, 145–149.


(10) Suzuki, A. *J. Organomet. Chem.* **1999**, *576*, 147–168.

(11) Characterization of (*S*)-4: $[\alpha]_D = -94.1$ (*c* 0.6, CH_2Cl_2). ¹H NMR (300 MHz, $CDCl_3$): δ 1.73–1.83 (m, 12H), 1.97 (d, $J = 2.4$ Hz, 12H), 2.11 (s, br, 6H), 3.81 (s, 6H), 5.95 (s, br, 2H), 6.98 (d, $J = 8.7$ Hz, 2H), 7.28–7.41 (m, 8H), 7.51 (d, $J = 2.4$ Hz, 2H), 7.89–7.94 (m, 4H). ¹³C NMR (75 MHz, $CDCl_3$): δ 29.20, 35.97, 37.00, 43.61, 56.32, 111.15, 115.57, 123.88, 125.18, 125.94, 126.69, 128.42, 129.36, 129.46, 131.39, 133.65, 144.76, 150.62, 154.56. APCI-MS *m/z*: 749.6 (100, $M + 1 - H_2O$). HRMS (FAB) calcd for $C_{54}H_{54}O_4$ (M^+): 766.4022; found: 766.4038.

also demonstrates that no diastereomeric isomers arose from the bulky adamantanyl-substituted 3,3'-aryl groups unlike what we observed in the analogous 3,3'-naphthyl compounds.¹² That is, the rotation barrier for the 3,3'-aryl groups around the aryl–aryl single bonds of (*S*)-4 is still very small. The specific optical rotation ($[\alpha]_D$) of (*S*)-4 is -94.1 (*c* 0.6, CH_2Cl_2).

We studied the application of (*S*)-4 in the reaction of phenylacetylene with benzaldehyde in the presence of diethylzinc (Scheme 2). We found that this reaction was

Scheme 2. Reaction of Phenylacetylene with Benzaldehyde in the Presence of (*S*)-4 and Diethylzinc

strongly influenced by the solvent. Very low enantioselectivity was observed in toluene (22% ee, entry 1) and methylene chloride (13% ee, entry 2). However, there was a dramatic enhancement in enantioselectivity when THF was used as the solvent (84% ee, entry 3). Decreasing the reaction temperature from room temperature to 0 °C led to increased ee but it reduced both the reaction rate and yield (entry 4). Increasing the amount of the ligand from 10 to 20 mol % gave a lower ee of 76% (entry 5). This could be attributed to a concentration effect. When the amount of diethylzinc was increased from 2 to 4 equiv, the reaction proceeded faster but more side product resulted from the diethylzinc addition to benzaldehyde (entries 6, 7).

Table 1. Reaction of Phenylacetylene with Benzaldehyde Catalyzed by (*S*)-4 in the Presence of Diethylzinc

entry	Et ₂ Zn (equiv)	(<i>S</i>)-4 (mol %)	solvent	temp	time (h)	ee (%)	yield (%)
1	2.0	10	toluene	rt	5	22	
2	2.0	10	CH_2Cl_2	rt	5	13	
3	2.0	10	THF	rt	18	84	75
4	2.0	10	THF	0 °C	36	88	42
5	2.0	20	THF	rt	16	76	
6	4.0	10	THF	rt	9	83	57
7	4.0	10	THF	0 °C	36	92	48

Following is a description of the experimental procedure used in entry 3 of Table 1. Under nitrogen, to a solution of (*S*)-4 (19 mg, 10 mol %) in THF (3 mL, dried with activated alumina) in a 10 mL Schlenk flask was added diethylzinc (53.0 μ L, 0.5 mmol, 2.0 equiv). After the mixture was stirred at room temperature for 1 h, phenylacetylene (42.0 μ L, 0.38 mmol, 1.5 equiv) was added and the stirring continued for an additional 1 h. Benzaldehyde (25.5 μ L, 0.25 mmol) was then added, and the reaction mixture was stirred for 18 h.

(12) Simonson, D.; Kingsbury, K.; Xu, M.-H.; Hu, Q.-S.; Sabat, M.; Pu, L. *Tetrahedron* **2002**, *58*, 8189–8193.

Table 2. Reaction of Phenylacetylene with Aromatic Aldehydes in the Presence of (*S*)-4 and Diethylzinc^a

entry	aldehyde	isolated yield (%)	ee (%) ^b
1		75	84
2 ^c		42	88
3 ^{c,d}		48	92
4		74	94
5		75	85
6		72	84
7		63	84
8		64	91
9		71	85
10 ^c		45	80

^a Reactions were carried out with 10 mol % (*S*)-4, 2.0 equiv of Et₂Zn, and 1.5 equiv of phenylacetylene in THF at room temperature unless otherwise noted. ^b Determined by HPLC analysis on a Chiralcel OD column. ^c Temp = 0 °C. ^d Et₂Zn (4.0 equiv) was used.

The reaction was then quenched with 1 N HCl, and the

mixture was extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under vacuum. Flash chromatography of the residue on silica gel using hexane/ethyl acetate as eluent gave the product 1,2-diphenyl-prop-2-yn-1-ol (39 mg) in 75% yield. The configuration of the product was *S* as determined by comparing its optical rotation with the literature data.^{8c}

The above procedure was applied to the reaction of phenylacetylene with a variety of aromatic aldehydes catalyzed by (*S*)-4 in the presence of diethylzinc. As the results summarized in Table 2 show, enantioselectivities ranging from 80 to 94% ee were achieved for the reaction of phenylacetylene with aromatic aldehydes containing electron-donating or electron-withdrawing substituents at the *o*-, *m*-, or *p*-positions.

In summary, we have demonstrated that a novel 1,1'-binaphthyl compound containing bulky 3,3'-aryl substituents is a good enantioselective catalyst for the reaction of phenylacetylene with various aromatic aldehydes under very mild conditions. Unlike the previously reported 1,1'-binaphthyl catalysts, this new compound does not need the use of Ti(O*i*Pr)₄. In addition, it also does not require a separated step to prepare the alkynylzinc reagent. This has greatly simplified the experimental procedure for this reaction.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support for this research.

OL027110Q